0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 AND
↳7 IDP
↳8 IDependencyGraphProof (⇔)
↳9 TRUE
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB14 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x == y && x > 0) {
while (y > 0) {
x--;
y--;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 19 rules for P and 5 rules for R.
Combined rules. Obtained 2 rules for P and 0 rules for R.
Filtered ground terms:
901_0_main_LE(x1, x2, x3, x4) → 901_0_main_LE(x2, x3, x4)
Cond_901_0_main_LE1(x1, x2, x3, x4, x5) → Cond_901_0_main_LE1(x1, x3, x4, x5)
Cond_901_0_main_LE(x1, x2, x3, x4, x5) → Cond_901_0_main_LE(x1)
Filtered duplicate args:
901_0_main_LE(x1, x2, x3) → 901_0_main_LE(x1, x3)
Cond_901_0_main_LE1(x1, x2, x3, x4) → Cond_901_0_main_LE1(x1, x2, x4)
Combined rules. Obtained 2 rules for P and 0 rules for R.
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if (0 > 0 →* TRUE)
(1) -> (0), if true
(1) -> (2), if ((0 →* x0[2])∧(0 →* x1[2]))
(2) -> (3), if ((x1[2] > 0 →* TRUE)∧(x0[2] →* x0[3])∧(x1[2] →* x1[3]))
(3) -> (0), if ((x0[3] + -1 →* 0)∧(x1[3] + -1 →* 0))
(3) -> (2), if ((x0[3] + -1 →* x0[2])∧(x1[3] + -1 →* x1[2]))
(1) (>(0, 0)=TRUE ⇒ 901_0_MAIN_LE(0, 0)≥NonInfC∧901_0_MAIN_LE(0, 0)≥COND_901_0_MAIN_LE(>(0, 0), 0, 0)∧(UIncreasing(COND_901_0_MAIN_LE(>(0, 0), 0, 0)), ≥))
(2) (COND_901_0_MAIN_LE(TRUE, 0, 0)≥NonInfC∧COND_901_0_MAIN_LE(TRUE, 0, 0)≥901_0_MAIN_LE(0, 0)∧(UIncreasing(901_0_MAIN_LE(0, 0)), ≥))
(3) ((UIncreasing(901_0_MAIN_LE(0, 0)), ≥)∧[1 + (-1)bso_10] ≥ 0)
(4) ((UIncreasing(901_0_MAIN_LE(0, 0)), ≥)∧[1 + (-1)bso_10] ≥ 0)
(5) ((UIncreasing(901_0_MAIN_LE(0, 0)), ≥)∧[1 + (-1)bso_10] ≥ 0)
(6) (0=x0[2]∧0=x1[2] ⇒ COND_901_0_MAIN_LE(TRUE, 0, 0)≥NonInfC∧COND_901_0_MAIN_LE(TRUE, 0, 0)≥901_0_MAIN_LE(0, 0)∧(UIncreasing(901_0_MAIN_LE(0, 0)), ≥))
(7) (COND_901_0_MAIN_LE(TRUE, 0, 0)≥NonInfC∧COND_901_0_MAIN_LE(TRUE, 0, 0)≥901_0_MAIN_LE(0, 0)∧(UIncreasing(901_0_MAIN_LE(0, 0)), ≥))
(8) ((UIncreasing(901_0_MAIN_LE(0, 0)), ≥)∧[1 + (-1)bso_10] ≥ 0)
(9) ((UIncreasing(901_0_MAIN_LE(0, 0)), ≥)∧[1 + (-1)bso_10] ≥ 0)
(10) ((UIncreasing(901_0_MAIN_LE(0, 0)), ≥)∧[1 + (-1)bso_10] ≥ 0)
(11) (>(x1[2], 0)=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3] ⇒ 901_0_MAIN_LE(x0[2], x1[2])≥NonInfC∧901_0_MAIN_LE(x0[2], x1[2])≥COND_901_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])∧(UIncreasing(COND_901_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥))
(12) (>(x1[2], 0)=TRUE ⇒ 901_0_MAIN_LE(x0[2], x1[2])≥NonInfC∧901_0_MAIN_LE(x0[2], x1[2])≥COND_901_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])∧(UIncreasing(COND_901_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥))
(13) (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_901_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[bni_11 + (-1)Bound*bni_11] + [bni_11]x1[2] ≥ 0∧[(-1)bso_12] ≥ 0)
(14) (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_901_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[bni_11 + (-1)Bound*bni_11] + [bni_11]x1[2] ≥ 0∧[(-1)bso_12] ≥ 0)
(15) (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_901_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[bni_11 + (-1)Bound*bni_11] + [bni_11]x1[2] ≥ 0∧[(-1)bso_12] ≥ 0)
(16) (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_901_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧0 = 0∧[bni_11 + (-1)Bound*bni_11] + [bni_11]x1[2] ≥ 0∧0 = 0∧[(-1)bso_12] ≥ 0)
(17) (x1[2] ≥ 0 ⇒ (UIncreasing(COND_901_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧0 = 0∧[(2)bni_11 + (-1)Bound*bni_11] + [bni_11]x1[2] ≥ 0∧0 = 0∧[(-1)bso_12] ≥ 0)
(18) (COND_901_0_MAIN_LE1(TRUE, x0[3], x1[3])≥NonInfC∧COND_901_0_MAIN_LE1(TRUE, x0[3], x1[3])≥901_0_MAIN_LE(+(x0[3], -1), +(x1[3], -1))∧(UIncreasing(901_0_MAIN_LE(+(x0[3], -1), +(x1[3], -1))), ≥))
(19) ((UIncreasing(901_0_MAIN_LE(+(x0[3], -1), +(x1[3], -1))), ≥)∧[1 + (-1)bso_14] ≥ 0)
(20) ((UIncreasing(901_0_MAIN_LE(+(x0[3], -1), +(x1[3], -1))), ≥)∧[1 + (-1)bso_14] ≥ 0)
(21) ((UIncreasing(901_0_MAIN_LE(+(x0[3], -1), +(x1[3], -1))), ≥)∧[1 + (-1)bso_14] ≥ 0)
(22) ((UIncreasing(901_0_MAIN_LE(+(x0[3], -1), +(x1[3], -1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(901_0_MAIN_LE(x1, x2)) = [1] + x2
POL(0) = 0
POL(COND_901_0_MAIN_LE(x1, x2, x3)) = [2]
POL(>(x1, x2)) = [-1]
POL(COND_901_0_MAIN_LE1(x1, x2, x3)) = [1] + x3
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
901_0_MAIN_LE(0, 0) → COND_901_0_MAIN_LE(>(0, 0), 0, 0)
COND_901_0_MAIN_LE(TRUE, 0, 0) → 901_0_MAIN_LE(0, 0)
COND_901_0_MAIN_LE1(TRUE, x0[3], x1[3]) → 901_0_MAIN_LE(+(x0[3], -1), +(x1[3], -1))
901_0_MAIN_LE(0, 0) → COND_901_0_MAIN_LE(>(0, 0), 0, 0)
901_0_MAIN_LE(x0[2], x1[2]) → COND_901_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])
901_0_MAIN_LE(x0[2], x1[2]) → COND_901_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer